Overview

 

B0000160During endochondral bone growth, chondrocytes in the growth plate undergo a highly coordinated and tightly controlled process of proliferation, hypertrophy and finally apoptosis at the vascular invasion front. Chondrocyte proliferation and hypertrophy is vital for correct long bone growth, whilst apoptosis of terminal hypertrophic chondrocytes plays a critical role in the transition from chondrogenesis to osteogenesis. Disruptions to these processes lead to growth plate dysplasia and result in a heterogeneous group of genetic diseases known as skeletal dysplasias that are characterised predominantly by short-limb dwarfism.

=============================================================

The Scientific Story

EM chondrocyte

At each stage of maturation in the growth plate, chondrocytes synthesise and secrete specific structural proteins that are incorporated into the extracellular matrix (ECM). For example, cartilage oligomeric matrix protein (COMP) and matrilin-3 are expressed to the greatest extent by resting and proliferative chondrocytes, whilst type X collagen is expressed exclusively by hypertrophic chondrocytes.

The expression of mutant forms of these cartilage structural proteins causes endoplasmic reticulum (ER) stress and induces an unfolded protein response (UPR). Briefly, the UPR is a sophisticated quality control system that aims to reduce ER stress through the activation of a number of different pathways that are mediated by three receptors, IRE1, ATF6 and PERK, and involving other downstream factors such as Xbp-1 and eIF2a. However, if ER homeostasis is not achieved then prolonged ER stress can eventually result in CHOP-mediated apoptosis.

WT_chondron_plus_sectionWe have shown using genetically engineered mouse models that the induction of ER stress and the UPR, through the expression of mutant COMP, matrilin-3 and type X collagen, can directly affect chondrocyte phenotype and cause growth plate dysplasia leading to short-limb dwarfism.

Interestingly, although these mouse models all exhibit ER stress and an UPR, the different pathways thatare activated appear to be gene and/or mutation specific. It is not clear in these archetypal examples of prolonged ER stress, whether the UPR is chondrocyte protective or a significant cause of distress.

Answering this fundamental question will not only explain the initiation and progression of skeletal dysplasias, but will provide essential insight into disease mechanisms in many different diseases in which ER stress and UPR has been implicated.

A video article of our research can be seen here.

Some press articles of our work are here:-

Northern Echo 2013

Arthritis Research UK 2006

Wellcome Trust News 2002

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s